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@ Introduction

Hadronic light-by-light (HLbL) scattering

e up to now only model calculations

e uncertainty estimate based rather
on consensus than on a systematic
method

e with recent progress on vacuum
polarisation, HLbL starts to
dominate theory error



@ Introduction

Model calculations of HLbL

Contribution BPP HKS KN MV BP PdRV ~ N/JN
w0, n,n 85413  82.7+6.4 83+12 114410 —  114%13 99416
7, K loops —19+13 —4.548.1 — — — —19+19 —19+13
7, K loops + other subleading in N, - - — 0£10 — — —
axial vectors 2.5+1.0 1.7£1.7 — 22+5 — 15+10 22+5
scalars —6.8+£2.0 - - - - —7£7 —-T+2
quark loops 21+3 9.7£11.1 - — — 2.3 21+3
total 83+32  89.6+15.4  80+40 136+25 110+40 105+26 116+39

— Jegerlehner, Nyffeler (2009)
e pseudoscalar pole contribution most important
e pion-loop second most important

e differences between models, large uncertainties



@ Introduction

How to improve HLbL calculation?

e make use of fundamental principles:
e gauge invariance, crossing symmetry
e unitarity, analyticity

e relate HLbL to experimentally
accessible quantities
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@ Lorentz structure of the HLbL tensor

The HLbL tensor: definitions

e hadronic four-point function:

HW’\U(QM q2, Q3)

N _i/ dadydze™ @ H 2O T () i ()00 ()78 (0)10)

e EM current:
Jom = Z Qigiv" 4

i=u,d,s



@ Lorentz structure of the HLbL tensor

The HLbL tensor: definitions

e helicity amplitudes for the process
(g1, M) (g2, A2) = 7" (a3, A3)v(qa, As):
H)\1)\2)\3)\4 = 6/);1 EZA/2€§3*E¢)7\'4*HHV)\O
e Mandelstam variables:
s=(n+@)t=(n+e) u=I(@+q)
e for (g — 2),, the external photon is on shell:
q; = 0, where g4 = q1 + g2 + g3



@ Lorentz structure of the HLbL tensor

The HLbL tensor
e a priori 138 ‘naive’ Lorentz structures:
H;U/)\J — guug)\anl +guAgVJH2 + guagl/)\HS

A o
+ Z 4 4.9 ?}kz

i,k,l,m

+ Z A

e in 4 space-time dimensions: 2 linear relations among
the 138 Lorentz structures — Eichmann et al. (2014)

¢ six dynamical variables, e.g. two Mandelstam
variables s, t and the photon virtualities ¢, ¢3, ¢3, ¢3



@ Lorentz structure of the HLbL tensor

HLbL tensor: gauge invariance

Ward identities

{Q‘fa ql2/7 Q:?a QZ}H;W)\U = 0

imply 95 linear relations between scalar functions 11;
off-shell basis: 138 — 95 — 2 = 41 structures
corresponding to 41 helicity amplitudes

relations between I1; imply kinematic zeros



@ Lorentz structure of the HLbL tensor

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition, following a
recipe by Bardeen, Tung (1968) and Tarrach (1975):

54
(g1, g2, gs) = Y T (s, £ 05 63)
=1
e Lorentz structures manifestly gauge invariant

e crossing symmetry manifest: only 7 distinct
structures, 47 follow from crossing

e scalar functions II; free of kinematic singularities
= ideal quantities for a dispersive treatment
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@ Master formula for (g — 2),,

Master formula: contribution to (¢ — 2),,

e from gauge invariance:

s 0
Huw\p = —qy a_qu,uV)\U
4

e for (g — 2),: afterwards take ¢, — 0

¢ no kinematic singularities in scalar functions: perform
these steps with the derived Lorentz decomposition

e only 12 linear combinations of the scalar functions II;
contribute to (¢ — 2),,



@ Master formula for (g — 2),,

Master formula: contribution to (g — 2),,

12 . A
> Tilqr, 2 p)ILi(aqr, g2, —1 — 42)
i=1

a

HLbL _ 66/ d46]1 d4(12
g 2m)* 2m) i3 (qr + ¢2)[(p + @) — m2)[(p — @2)* — m}]

e T;: known integration kernel functions

o five loop integrals can be performed with
Gegenbauer polynomial techniques

— Knecht, Nyffeler (2002); Jegerlehner, Nyffeler (2009),
Bijnens, Zahiri-Abyaneh (2012); Bijnens, Relefors (2016)

o Wick rotation possible even in the presence of
anomalous thresholds



@ Master formula for (g — 2),,

Master formula: contribution to (¢ — 2),,

ali"h = / dQ, / dQs / drv1—7120Q3Q

37‘(‘2

X ZTi(QlaQ%Tﬂji(Ql?QQ?
=1

T;: known integration kernels

Euclidean momenta: Q7 = —¢;

Q3 = Q%+ Q3+ 2Q1 Qa7

3
2

7)

I1,;: linear combinations of the scalar functions II;



Overview

@ Dispersive representation
Pion pole
Pion box
w7 rescattering



@ Dispersive representation

Analytic properties of scalar functions

e right- and left-hand cuts in each Mandelstam variable
e double-spectral regions (box topologies)

e anomalous thresholds for large photon virtualities



@ Dispersive representation

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ 1ym-pole box Lo
H,uzz/\a - H,w/)\a + H,ul/)\a + Hw/)\a



@ Dispersive representation

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:
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one-pion intermediate state:



@ Dispersive representation

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ 1ym-pole box Lo
H,uzz/\a - H/JVAU + H;w)\a + Hw/)\a

two-pion intermediate state in both channels:




@ Dispersive representation

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ 1y7°-pole box T
H,uzz/\a - H/JVAU + H/J,V)\O’ + Hur/)\a

two-pion intermediate state in first channel:




@ Dispersive representation

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ 1ym-pole box Lo
H,uzz/\a - H/JVAU + H/J,V)\O’ + Hw/)\a

future work: higher intermediate states



@ Dispersive representation

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ 1ym-pole box Lo
H,uzz/\a - H/JVAU + H/J,V)\O’ + Hw/)\a

e the limit ¢, — 0 for (¢ — 2),, is taken in the end



@ Dispersive representation Pion pole

20

Pion pole

— talk by M. Hoferichter

Hwo-pole _ fﬂofy*'y* (qfa qg>f7r0’y*’y(q§7 0)
| ! s— M2

0. . )
I3 ,*°° via crossing symmetry

e input: doubly-virtual and singly-virtual pion transition
form factors 7. 0 and F, .o

e pion is on shell
e dispersive analysis of transition form factor:

— Hoferichter et al., EPJC 74 (2014) 3180



@ Dispersive representation Pion box

Box contributions

e simultaneous two-pion cuts in
two channels

e Mandelstam representation
explicitly constructed

- 1 pft S,,t,)
Hi box = 7_‘_2/dS/dt/(S/_i)(t,_t) + (t <~ U) -+ (8 <~ U)

 ¢’-dependence: pion vector form factors £V (¢?) for
each off-shell photon factor out

21



@ Dispersive representation Pion box
Box contributions

e SQED loop projected on BTT basis fulfils the same
Mandelstam representation

« only difference are factors of FV

e = box topologies are identical to FsQED:

—FVQ1FVQ2FVQ3

1aa0=4

e model-independent definition of pion loop

22



@ Dispersive representation

23

Box contributions

Very simple expressions for box contributions in terms
of Feynman parameter integrals

7% (¢, a5, 43) = Fy (a})FY (63)FY (43)
1—x
167?2/ dx/ dy I;(z,y),

4(1—22)*(1 —2y)*y(1 —y)
[7($,y) = _g( A?Qg 3
2

Ajje = M? —ayq? —a(1 — 2z —y)q; —y(1 —z — y)q;.

with e.qg.

Pion box



@ Dispersive representation Pion box

Pion-box saturation with photon virtualities
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@ Dispersive representation Pion box

25

Box contributions

FY: fit of dispersive representation to time- and
space-like data
Result: a7 = —15.9(2) x 107"

- NA7
0.8} . JLab

;1706 I
£ 1
0.2
!
0

X 08 06 04 02 0
s [GeV?]



@ Dispersive representation wr rescattering

26

Helicity formalism and sum rules

e construction of singly-on-shell basis: unphysical
helicity amplitudes drop out, 27 elements remain

o uniform asymptotic behaviour of the full tensor
together with BTT tensor decomposition leads to
15 HLbL sum rules

e sum rules derived for general (g — 2), outer
kinematics (not forward scattering — tal by I. Danilkin)

0= /dsllmﬁi(s')

t=q3,43=0

e can be expressed in terms of helicity amplitudes



@ Dispersive representation

27

Rescattering contribution

i

e neglect left-hand cut due to multi-particle
intermediate states in crossed channel

e two-pion cut in only one channel:

1 /1 [ ImIIT™ (s, ¢/, u’ 1 [o° ImII7™ (s, t', u’
fpr = L (L[ a1 I )
2 \m Jam2 t—t ™ Jam2 u —u

+ fixed-t

+ fixed-u)

wr rescattering



@ Dispersive representation wr rescattering

28

Rescattering contribution

e unitarity gives imaginary parts in terms of helicity
amplitudes for y*v*) — 77

e basis change to helicity amplitudes calculated
e expansion into partial waves
o framework valid for arbitrary partial waves

e resummation of PW expansion reproduces full result:
checked for pion box



@ Dispersive representation

29

Convergence of partial-wave expansion

Relative deviation from full result: 1 —

m-box, PW

1, Jmax

m-box
ap

Jmax | fixed-s |

fixed-t | fixed-u | average

100.0%
26.1%
10.8%

5.7%
3.5%
2.3%
1.7%
1.3%
1.0%

—6.2%
-2.3%
-1.5%
—0.7%
—0.4%
—0.2%
—0.1%
—0.1%
—0.0%

—6.2%
7.3%
3.6%
2.1%
1.3%
0.9%
0.7%
0.5%
0.4%

29.2%
10.4%
4.3%
2.4%
1.5%
1.0%
0.7%
0.6%
0.4%

wr rescattering



@ Dispersive representation wr rescattering

30

The subprocess

Helicity amplitudes for v*v* — 7r: dispersive solution
of the S-wave unitarity relation with Omnés methods

pion-pole approximation to left-hand cut

= ¢*-dependence again given by Y

phase shifts based on modified inverse-amplitude
method

low-energy properties accurately reproduced,
including fo(500) parameters

fully consistent with 7+ polarisabilities

result for S-waves: a} ;757 = —§(1) x 10711



@ Dispersive representation wr rescattering

31

Topologies in the rescattering contribution

Omnés solution for v*v* — 7w provides the following:

NS OB %

recursive PWE, no LHC

Two-pion contributions to HLbL:

pion box rescattering contribution
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@ Conclusion and outlook

Results for two-pion contributions

Pion-box contribution:

ar®™ = —15.9(2) x 10~

S-wave rescattering contribution:

wm,m-pole LHC —11
ok — 8(1) x 10

33



@ Conclusion and outlook

Summary

e our dispersive approach to HLbL scattering is based
on fundamental principles:

e gauge invariance, crossing symmetry
e unitarity, analyticity

e we take into account the lowest intermediate states:
n%-pole and wr-cuts

e relation to experimentally accessible (or again with
data dispersively reconstructed) quantities

e precise numerical evaluation of two-pion contributions
* a step towards a model-independent calculation of a,,

34



@ Conclusion and outlook

Outlook

¢ higher pseudoscalar poles can be directly included
— talk by B. Kubis
e two-particle intermediate states:
e include kaons in a coupled-channel system
e numerics for D-waves
e generalisation to heavier left-hand cuts
¢ higher intermediate states in direct channel
o framework needs to be extended
e e.9. 31 = axials

e match the total to OPE/pQCD constraints

35
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Backup



@ Backup

37

HLbL tensor: BTT Lorentz decomposition

Problem: find a decomposition

o )\0'
127 (g1, g2, q3) ZTW (s, t,u;q})

with the following properties:

e Lorentz structures T/** manifestly gauge invariant:

{q17q27q37q4} ,uu)\o':O

e scalar functions II; free of kinematic singularities and
zeros



@ Backup

38

HLDbL tensor: BTT Lorentz decomposition

Recipe by Bardeen, Tung (1968) and Tarrach (1975):
e construct gauge projectors:

1297 Ao
T — g _ 4291 Ao o 4493
12 =9 — 34 — -

g
ai - q2 g3 - 44
e gauge invariant themselves, e.g.

@1l =0

e leave HLbL tensor invariant, e.g.

!
L _
112 H,u’u)\o — H'uu)\o



@ Backup

39

HLDbL tensor: BTT Lorentz decomposition

Following Bardeen, Tung (1968):

e apply gauge projectors to the 138 initial structures:
95 immediately projectto 0

e remove 1/q; - ¢ and 1/q3 - ¢4 poles by taking
appropriate linear combinations

e BT basis: degenerate in the limits
@1 q2—>0,q3-q—0



@ Backup

40

HLDbL tensor: BTT Lorentz decomposition

According to Tarrach (1975):
e degeneracies in the limits ¢; - ¢ — 0, g3 - g4 — O:

i Ao Ao Ao
§ ATy = q - X" +q3- Y
k

« extend basis by additional structures X7, y/**
taking care of remaining kinematic singularities

e equivalent: implementing crossing symmetry



@ Backup

(g — 2), integration region in polar coordinates

41



@ Backup

A roadmap for HLbL

T — T

Pion transition form factor
2
Froyeys (a3,43)

Pion vector

42

form factor Fy;

@, 6 WW’D<—G+E_ - mj
N/

Partial waves for
YY* = 7

Gion poIarizabiIiti%(—CWr — 'ya

— flowchart by M. Hoferichter
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